

Radar Astronomy Sardinia Seminar Series

Joseph Lazio
Thanks to L. Benner, M. Brozovic, J. Giorgini, S. Naidu, R. Preston
Jet Propulsion Laboratory, California Institute of Technology

Spacecraft Telemetry, Tracking, & Command

Planetary Radar

Scale of the Solar System

Relative sizes of planetary orbits known for centuries

Radar provided absolute sizes of planetary orbits at precision needed for interplanetary navigation

Precision measurements from DSIF [DSN] radar measurements Reduced uncertainty to about 400 km (~ 0.0003%)

DSN Radar Accomplishments

- Discovered Venus retrograde rotation (1962)
- Probing the surfaces of asteroids (1976)
- First radar returns from Titan (1989-1993), suggestive of icy surface but with potential liquids

 Anomalous reflections from Mercury (1991), indicative of polar ice

Magellan radar image of Venus (NASA/Caltech/JPL)

Cassini radar image of Titan (NASA/JPL/USGS)

MESSENGER+radar image of Mercury (NASA/HU APL/CIW/NAIC)

Goldstone Solar System Radar

Imaging of Near-Earth Asteroids

Radar delivers size, rotation, shape, density, surface features, precise orbit, non-gravitational forces, presence of satellites, mass, ...

- Robotic or crewed missions: Navigation, orbit planning, and observations
- Planetary defense: Orbit determination for hazard assessment
- Science: Decipher the record in primitive bodies of epochs and processes not obtainable elsewhere

Radar Contributions to Space Missions

Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations

Michael C. Nolan ^{a,*}, Christopher Magri ^b, Ellen S. Howell ^a, Lance A.M. Benner ^c, Jon D. Giorgini ^c, Carl W. Hergenrother ^d, R. Scott Hudson ^e, Daniel I. Scheeres ^g

^a Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612, USA

^b University of Maine at Farmington, 173 High St, Preble Hall, Farmington, ME 04938, USA

^c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

^d Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA ^e Washington State University, Tri-Cities, Richland, WA 99354, USA

Department of Earth and Space Sciences, University of California, Los Angeles, CA 90295, USA

8 University of Colorado at Boulder, 429 UCB, Boulder, CO 80309-0429, USA

International Radar Assets

Goldstone DSS-14 (DSN) 70 m antenna, 450 kW transmitter, 4 cm wavelength (X band)

Arecibo (NAIC)
300 m antenna, 900 kW
transmitter, 13 cm
wavelength (S band)

Green Bank Telescope (GBO) 100 m antenna, no transmitter

Radar Equation

... Tyranny of

Radar transmitter transmits toward target ...

Target reflects, a.k.a. re-transmits, radar signal.

 P_{RX} – received power

P_{TX} – transmitted power

G – antenna gain

A – antenna area

σ – radar cross-section

R - range

Radar vs. Deep Space Communications

Ostro & Giorgini

Bistatic Radar Observations

$$P_{\rm RX} = P_{\rm TX} \frac{GA\sigma}{(4\pi)^2 R^4}$$

P_{RX} – received powerP_{TX} – transmitted power

 $P_{RX} = small$ $P_{TX} = BIG (>\sim 500 kW)$

Difficult to receive at same antenna, particularly if round-trip light travel time is small

Bistatic Radar Observations

$$P_{\rm RX} = P_{\rm TX} \frac{GA\sigma}{(4\pi)^2 R^4}$$

 P_{RX} – received power = small P_{TX} – transmitted power = BIG

Transmit antenna

Green Bank Telescope (GBT) (West Virginia)

Receive antenna

Arecibo

DSS-13 (Goldstone)

DSS-43 (Tidbinbilla)

Australia Telescope Compact Array (Narrabri, Australia)

Radar Signal Processing

Continuous Wave

Circularly polarized radio wave with constant amplitude and frequency

Binary Phase Coding (BPC)

Time-encode waveform

Linear Frequency Modulation ("chirp")

Constant amplitude, linear frequency ramp

Continuous Wave

Radar Signal Processing

incident radio wave

$$\Delta f \sim D/(\lambda P)$$

Continuous Wave

Radar Signal Processing

Continuous Wave

Radar Signal Processing

Expect "opposite sense" circular polarization (OC)

Can receive "same sense circular polarization

Ratio of OC/SC provides surface characterization

Credit: Dave3457

Radar Signal Processing

Ranging

Radar Signal Processing

Ranging

Radar Signal Processing

Key parameter: spacing of pulses, dependent upon S/N ratio

GSSR: 10 μs, 3 μs, 1 μs, ...

Orbit Determination Improvements with Radar

Would like $(x, y, z; v_x, v_y, v_z)$

Orbit Determination Improvements with Radar

Optical measurements provide (α , δ ; μ_{α} , μ_{δ}) Radar measurements provide (R, v_r)

Orbit Determination Improvements with Radar

Radar delay-Doppler measurements

- Time delay to 8 m (150 m--300 m typical)
- Doppler (a.k.a. range-rate) to 1.6 mm/s (8 mm/s typical)

For Potentially Hazardous Asteroids, historical average prediction extent is ...

- 1st apparition: +80 years without radar, +400 years with radar
 - Radar extends prediction window at discovery ~ 5x
 - ➤ Reduces orbit uncertainties ~ 10⁵ (at discovery)
- 2nd apparition: +800 years with or w/o radar, but cuts uncertainties 50%

Ranging to the Galilean Satellites

Jupiter's tidal dissipation constrains interior structure

- GSSR, Arecibo, GBT ranging to Galilean satellites
 Aiming for 2 km uncertainties in orbits (5× improvement)
- Detect secular acceleration of Galilean satellites from Jovian tides
 - Determine tidal dissipation parameter k₂/Q
 - Juno measures k₂

Radar Signal Processing

Linear Phase Modulation---Delay-Doppler

Repairing Processing

side view

Linear Phase Modulation---Delay-Doppler

Repaired Processing

Linear Phase Modulation---Delay-Doppler

Repaired Processing

Delay-Doppler Imaging

Goldstone Radar Images Feb 7, 2017 04:39-05:50 UTC

Finding Lost Spacecraft

Solar & Heliophysics Observatory (SOHO)

Joint ESA-NASA mission

- Launched 1995 December
- Earth-Sun L1 (~ 4 lunar distances)
- Width with solar array 9.5 m
- Lost contact 1998 June
- Found 1998 July with Arecibo + DSS-14

SOHO spacecraft

https://science.nasa.gov/science-news/science-at-nasa/1998/ast28jul98_1

Radar Recovery of Chandrayaan-1

Lunar Orbiting Spacecraft

Radar Astronomy

Summary

- Long history of using deep space antennas for planetary radar due to their large sizes and transmitters
 - Ranging and orbit determination
 - Surface characterization
 - Rotation

 $-\dots$

 Radar equation drives many requirements (1/R⁴)

Electromagnetic Spectrum

Credit: Wikipedia Images